Instructor:
Guang Yao, Ph.D.
Associate Professor, Molecular and Cellular Biology
guangyao@email.arizona.edu
Office Hours: Wednesdays 1:30-3 PM (LSS 554)

Teaching Assistant:
Kotaro Fujimaki
kfujimaki@email.arizona.edu
Office hours: Thursdays 12:30-1:30 PM (LSS 519)

Course description, objectives, and outcomes:
The course introduces computational and bioinformatics methods for the analysis of high-throughput experimental data in functional genomics, using the analysis of next-generation RNA-sequencing as a leading example. The course discusses related biological concepts and techniques, statistical methods and models, and provides hands-on experience with data analysis using R-based open-source software Bioconductor. The course prepares the students to perform independent analyses of genomic data in an interdisciplinary environment such as a research lab or pharmaceutical company.

Primary audience:
Graduate students and senior undergraduate students in life sciences and related fields (e.g., computer sciences, Math/Stat, and engineering) who have basic quantitative training and are interested in learning cutting-edge methods and understanding the underlying statistical principles to analyze high-throughput functional genomics data in biomedical research.

Prerequisite:
Understanding basic statistical (t-test, probability distributions, etc.) and biological concepts. Prior experience in computer programming is desirable but not required.

Textbook and course materials:
There is no required textbook for the course. Lecture notes, handouts, weekly calendar, and other course information and materials are provided on the course website in D2L.

Topics:
Module 1: Introduction to R/Bioconductor software
• Overview of R and Bioconductor packages
• Frequently used commands and tools
• Data structures and visualization

Module 2: Introduction to Next-generation sequencing (NGS) and RNA-seq techniques
• NGS and RNA-seq procedure and platforms
• RNA-seq applications

Module 3: Introduction to transcriptome data analysis
• Read quality control and preprocessing
• Mapping and alignment
• Transcriptome assembly
• Quantification of gene expression
• Differential expression analysis

Module 4: Bioinformatics annotation and analysis
• Gene annotation
• Functional genomics databases
• Statistical testing and machine learning in data analysis
• Gene ontology and gene set analysis
• Pathway and network analysis

Module 5: Small noncoding RNAs (snRNAs) and snRNA-seq analysis

Module 6: Student group topics and project presentations

Homework (45 pts):
There will be three homework assignments (15 pts each), as indicated on the D2L course calendar.
There will be a 10% penalty each day for late homework submission.

Final project (45 pts):
There will be one final project in which students select a research article of interest, download its raw sequencing data, and reproduce its RNA-seq data analysis. The students will also perform at least one functional analysis (e.g., pathway or gene set analysis) using a different method(s) from the authors’ and discuss the obtained result in the context of the paper.
The project will be done in groups of up to 3 students each. Each group will write a final report (including source code) and give an oral presentation.
Grading for the final project will be based on the quality of the written report (40%), the presentation (40%), and answering questions (20%).

Group topic presentation (Graduate students only, 35 pts):
Graduate students will form groups (2 students each) to work with the instructor and identify functional genomics-related topics. Each group will study the chosen topic, develop and
present a lecture (discussing techniques, applications, analysis principles, case studies etc.),
including class exercises.

Grading for group topic presentation will be based on the organized and presented materials
(50%, in the format of slides and slide descriptions), as well as the quality of the presentation,
discussion, and exercise (50%).

Quizzes and Exams (75 pts):
• Three scheduled in-class quizzes (15 pts each), as indicated on the D2L course calendar.
• Twelve unscheduled short quizzes (3 pts each) will usually (but not necessarily) be given at
 the beginning of a class period, with questions based on most recent lecture materials. Two
 lowest short quiz scores will be dropped for each student.
• All quizzes are closed-book (No notes or other resources may be used), unless otherwise
 noted.
• No midterm and final exams.
• Total points for scheduled quizzes = 45 pts.
• Total points for unscheduled short quizzes = 30 pts.

Final grades:
The total points for undergraduate and graduate students will be 165 and 200 points,
respectively.

The final grades will be given following the scale (percentage of the total points) below:

90-100 % = A
80-89% = B
70-79% = C
60-69% = D
0-59% = E

Make-up Assignments: Make-ups will not be given for missed assignments. In cases of
documented emergencies, contact the instructor within 48 hours of the assignment due time to
discuss special arrangements if needed.

Absence and Class Participation Policy: The UA’s policy concerning Class Attendance,
Participation, and Administrative Drops is available at http://catalog.arizona.edu/policy/class-
attendance-participation-and-administrative-drop

The UA policy regarding absences for any sincerely held religious belief, observance or
practice will be accommodated where reasonable. See http://policy.arizona.edu/human-
resources/religious-accommodation-policy.

Absences pre-approved by the UA Dean of Students (or Dean Designee) will be
honored. See https://deanofstudents.arizona.edu/absences

Code of Academic Integrity: Students are encouraged to share intellectual views and freely
discuss the principles and applications of course materials. Students may work together in discussion and consultation on course assignments, but all materials submitted to the course instructor must be the exclusive written work of the student indicated. Students may neither collaborate or consult with other students nor use other resources during quizzes.

Any form of cheating or plagiarism will result in a failing grade for the course, and in other appropriate disciplinary actions, as described by the UA Code of Academic Integrity at http://deanofstudents.arizona.edu/academic-integrity/students/academic-integrity

The University Libraries have some excellent tips for avoiding plagiarism, available at https://new.library.arizona.edu/research/citing/plagiarism

Selling class notes and/or other course materials to other students or to a third party for resale is NOT permitted without the instructor’s written consent. Violations to this and other course rules are subject to the Code of Academic Integrity and may result in course sanctions. Additionally, students who use D2L or UA e-mail to sell or buy these copyrighted materials are subject to Code of Conduct Violations for misuse of student e-mail addresses. This conduct may also constitute copyright infringement.

Special Needs and Accommodations: Students who need special accommodations or services should contact the Strategic Alternatives Learning Techniques (SALT) Center (http://www.salt.arizona.edu) and/or the Disability Resources Center (http://drc.arizona.edu, 520-621-3268). The appropriate office must document the need for accommodations.

Classroom Behavior Policy: Disruptive behaviors that interfere with or obstruct class teaching/learning activities are prohibited. These behaviors include disruptive conversations, non-class related readings, etc. Also included is the non-class related use of laptops, tablets, mobile devices, and other technology. In the event of disruptive behaviors in the classroom, official policies and procedures will be followed as described at https://policy.arizona.edu/education-and-student-affairs/disruptive-behavior-instructional-setting

Policy Against Threatening Behavior: https://policy.arizona.edu/education-and-student-affairs/threatening-behavior-students

Additional Resources for Students:
UA Academic policies and procedures are available at http://catalog.arizona.edu/policies
Student Assistance and Advocacy information is available at http://deanofstudents.arizona.edu/student-assistance/students/student-assistance

The information contained in the course syllabus, other than the grade and absence policies, may be subject to change with reasonable advance notice, as deemed appropriate by the instructor.